
Here is the text from Chapter 1 of my new book: Equations, the Power and
Beautry of Mathematics, by Clement Falbo

1 WHEREDOESMATHEMATICS COMEFROM?

Stone Age tools dating back to about 40,000 years ago were found at a site called
the Nwya Devu in Tibet and at earlier dates in the Blombos Cave in South
Africa. Also, in many places, drawings and symbols on cave walls depicted
human knowledge. There can be no doubt that language and technology had
their start in these early prehistoric times. It is safe to speculate that arithmetic,
agriculture, and art began to emerge in such places at such times.
Imagine human beings trying to survive by acquiring food and shelter in wild

environments. They had to confront major life-threatening problems. Every
day they had to think about ways to overcome challenges in a better way today
than they had yesterday. The creative human mind is no doubt, the source of
our accumulated knowledge, including mathematics, science, literature, art and
music that we pass down from one generation to the next.
But what about the stu¤ we study today in school? We might ask: How

did we get to this place? Well, there is plenty of evidence that sophisticated
mathematical activities were practiced in civilizations that existed before 3000
BCE. And this happened, independently, in the Eastern World (China), the
Near East (Persia), Mesopotamia(Greece), and in the Western World (Europe).
For example, around 500 BCE in China, architects wanted to build a square

wall around their city, so they invented the right triangle independently from
the Pythagoreans in Greece. Surveyors used formulas to �nd the areas of the
cities enclosed by those walls. Merchants used the abacus to keep track of their
purchases, inventories and sales of millet and �sh. Warriors wanted to learn
the best strategies for winning a battle and gamblers wanted to compute the
best odds in betting on the outcomes of wars and games. Thus, we have the
beginnings of geometry, computers, matrix algebra and probability in the East.
Meanwhile, these same sort of things were happening in the West..
In general, let�s say that mathematics comes from human attempts to solve

hard problems. Time and time again, new concepts and new branches of math-
ematics arose when we humans encountered a tough nut to crack. When such
a problem was �nally solved, it became apparent to the solver and others, even
years later, that the same technique would work for totally unrelated problems.
Next thing you know, these new mathematical methods would be confronted
by some new challenge. Ironically, the new problems could even arise from
the previous state of the art itself. This created new and seemingly impossible
obstacles, needing new and deeper methods.
Not to belabor this "chicken and egg" theory, let me invite you into my house

of mathematics. There is a sense in which mathematics can be de�ned as a
house with a library of collected problems, solved and unsolved In addition,
this library contains treatises on formulas and methods that might be worth
applying to future problems. It also includes alcoves where visitors can come
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and sit and try to get insights for attacking problems of their own makings or
those found in the library.
They can write up their results and keep them secret, as Carl Friedrich Gauss

did in the 1800�s with some of his work, ("Few, but ripe." was his motto) or they
could put them up on the shelves (publish them) for future visitors. Everyone
is welcome to the house of mathematics.
As we enter the house, we realize that much of modern physics, engineering

and economics contributed to the mathematics created in the last 3 or 4 cen-
turies. When we study prime numbers we will be discovering beautiful, but
hidden, truths that exist in the counting numbers. In our study of abstract
algebras, we will have the pleasure of taking stock of powerful techniques and
applications that have been discovered in these relatively recent, times. In some
of the back rooms, looking at dusty old records of mathematical knowledge dat-
ing back beyond thousands of years, we discover the early beginnings of recent
events, speci�cally number theory, geometry and algebra.
Almost all mathematical concepts are derived from the counting numbers,

algebra, and geometry. In geometry, we can construct �gures, consisting of
points, lines and curves, marked on paper, or as done in Athens by the ancient
Greek mathematicians, scratched in sand with a stick. Alternatively, geometric
entities can exist mentally de�ned only by a set of assumptions called axioms.

A

Figure 1.1 Is this a straight line?

In 300 BCE, Euclid brought together three hundred years of Western math-
ematical knowledge and organized it into thirteen books called, The Elements.
Euclid�s books laid the foundations of plane and solid geometry, number the-
ory, trigonometry, and the beginnings of algebra. Later, around 240 BCE,
Archimedes did much more with geometry and numerical computations, apply-
ing them to his inventions of engineering tools, war machines, and the solutions
of problems requiring calculus, nearly two millennia before the dates usually
attributed to the invention of calculus.
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The �rst axiom in Euclidean geometry is "A straight line can be drawn
from any point to any point." Scholars over the centuries have been critical
of the imprecision of Euclid�s treatment of geometry. He failed to meet the
modern, more stringent, requirements later applied to evolving standards in
mathematics. Consider Figure 1:1. Is this an example of a straight line being
drawn from any point to any point? It could be. As a matter of fact, there is
no way to settle this question from just this one axiom. The whole geometric
system might consist of just this single point, and lines could be de�ned like
this. If Euclid meant (and it is clear that he did) his geometry to contain more
than one point, then the axiom is faulty.
In the 18th and 19th centuries, mathematicians re-wrote the axioms and

de�nitions in more precise language; they required this axiom to say that a
straight line can be drawn from any point to any other point, stating clearly
that the line is de�ned by two distinct points, and not by one point alone.
Sometimes this axiom is shortened to say "Two points determine a line." What
is required for the construction of a line is simply the identi�cation of two points.
So that in any geometric �gure if we are given that A and B are two (distinct)
points then we can justify saying "Construct the line AB through the two given
points A and B." The original Euclidean de�nition of circles and angles also
su¤ered from the same kind of unconscious assumptions that something more
was meant than what was said. Never-the-less, if you are willing to forgive
such ga¤s, Euclid�s work was really a substantial achievement, a testament to
the greatness of Greek mathematicians.

1.1 Algebra

Actually, the seeds of algebra were sown by Euclid himself when he introduced
the idea of a unit length, creating a "metric" (measurement) in geometry in
order to add, multiply, subtract and divide lengths, areas and volumes. This
type of metric geometry dealt with numbers, and was, eventually, the beginning
of algebra, started by Diophantus, in Greece and much further developed in
Persia by Al-Khwarizimi around 800 CE. Our word "algebra" came from the
title of his book Al-jabr, which, apparently, meant it was a book about balancing
equations.

1.2 Analytic geometry

For the most part, Euclidean Geometry is synthetic geometry because when you
solve problems in it you are "synthesizing" (building up) the geometric �gures.
In 1630, René Descartes introduced the notion of analytic geometry, solving
problems by "analyzing" them, (breaking them down). He started solving
geometric problems by use of algebraic equations and a coordinate system, which
we call the Cartesian Coordinates. In analytic geometry a curve, such as a
parabola can be de�ned by an equation, for example the equation, y = 2x�x2;
can be represented by the set of all points (x; y); in the coordinate plane where
x is any number and y is twice x minus the square of x in the coordinate plane
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as shown in Figure 1.2. Every point on the graph has coordinates (x; y); where
x is any number and y = 2x� x2:
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Figure 1.2 Graph of the equation y = 2x� x2.

Analytic geometry lead to a �urry of activities over the 60 years between 1630
and 1690 when other mathematicians such as Pierre de Fermat from France used
the coordinate system to start solving problems concerning instantaneous rates
of growth, and when Bonaventura Cavalieri from Italy used these coordinates to
�nd areas of geometric regions enclosed by curves. Finally, Isaac Newton from
England and, independently, Gotfried von Leibnitz, from Germany harvested all
the bits and pieces being produced over these years and amalgamated them into
a coherent body of mathematics called the calculus. Newton himself proclaimed
in 1675: "If I have seen further, it is by standing on the shoulders of giants."

2 Development of modern mathematics

In Chapter 2, we will see that, at �rst, algebra was a practical tool used to solve
problems in measurements, accounting and construction work. But, astronomy,
physics, other sciences and pure mathematical curiosity, itself, moved both alge-
bra and geometry into more advanced forms. Over the centuries, these subjects
evolved into the many facets of mathematics today.
Perhaps Euclid�s most signi�cant and longest-lasting contribution to math-

ematics is what really de�nes formal mathematics. He organized mathematical
statements about geometry into a list of things, called the postulates or axioms
which we are willing to assume as true (for the sake of argument) versus another
list of things, called propositions, or theorems, that we can prove to be true.
Throughout history, any mathematical statement that is claimed to be true in
geometry or algebra or any other system, can have that status of being true
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only if: a) it is one of the assumed postulates of that system or b) it is one of
the statements that has been proved to be true in that system. But, just what
do we mean by "proved to be true"?

2.1 What is a proof?

Put simply, a proof of some assertion, in algebra, geometry (or any other math-
ematical system) is a sequence of steps that can be used to logically derive that
assertion from the axioms of that system. An equally valid proof would be a
sequence of steps showing that a denial of the assertion leads to a contradiction
of the axioms.
In other words, a proof is a method that lets us justify saying that the

assertion is true�a logical consequence of the axioms. We cannot prove that
the axioms themselves are true because we have are already assumed them to be
true. Rather than asking the question "are the axioms true?" we need to ask,
"are the axioms su¢ cient for some purpose and do they result in theorems of
some substantial consequence?" The study of axioms, themselves in this way is
an interesting examination of questions about mathematics and questions about
how and why it works. In a sense, it is looking at mathematics from a bird�s
eye view, and is known as metamathematics.

2.2 Rapid progress

In the years between 1630 and 1800 mathematicians concentrated on solving
practical problems and it is fair to say that they paid little or no attention to
metamathematics. With the discovery, however, of non-euclidean geometry,
and imaginary numbers, they recognized the need to �rm up the foundations by
examining the axioms. This was especially true since many practical problems
in gravity, electricity, magnetism, and subatomic forces became more abstract,
in physics, and new concepts such as group theory and topology became more
abstract in mathematics.
Relativity, space-time continua, various forces in nature, and quantum physics

stimulated increasingly new demands on mathematical systems. Around the
1880s mathematicians, and physicists, �nally after a lot of introspection, estab-
lished almost all of the axioms needed to de�ne the real number system.
Even so, one major problem left to be solved was that of the continuity of

a function, especially any function that was de�ned as the limit of an in�nite
series. The need to �x this problem was "in the air", so to speak, and several
mathematicians invented their own axioms to complete the real number line.
These various axioms: the Least Upper Bound Axiom, the Nested Sequence Ax-
iom and others, turned out to be equivalent to each other in the sense that if you
assumed any one, you could prove all the others. One of the earliest and most
widely accepted such axiom was the one posed by the German mathematician,
Richard Dedekind in 1880; his axiom is called the Dedekind Cut Axiom.
In any case, the addition of any one of these completeness axioms be-

came the crowning achievement that would insure that the real number line
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was continuous. Now, the scienti�c community was sanguine about the most
fundamental questions regarding axioms, theorems and logic in mathematics.
They could con�dently say that "truth" in a system meant "provable" from the
assumptions of that system. It is relative and not an absolute.1

3 Disturbing questions

At the end of the nineteenth and beginning of the twentieth centuries, the study
of sets became central to almost all mathematical ideas. It was the most nat-
ural logical consequence in the development of a uni�ed mathematical science.
Unfortunately, however, a crises occurred. When the axioms came under closer
scrutiny, serious questions arose concerning their logical consistency, their com-
pleteness and even their value to humanity. What contradictions arise when
we work with sets of numbers or sets of other kinds of elements? Can a set
contain itself as an element? We know what we mean by limits, but what do
we mean by in�nity? Why does it appear that there are two di¤erent sizes of
in�nity; one for the rational numbers and one for the irrational numbers? Are
there more in�nities? And does truth itself exist as an absolute construct?
Are all axiom systems equally "good"? And what about Kurt Gödel�s proof,
upsetting the apple cart in 1930? We will tell you this story in Chapter 12 of
this book.

3.1 Practical resolution

Aside from these disturbing questions, what can we properly say about the na-
ture of mathematics and about proofs? Abstractly, mathematics is a collection
of non-contradictory logical statements based upon previously laid-out sets of
axioms. Even so, we must recognize that mathematics is much more than just
that The axioms are based upon real attempts to solve real problems faced by
real human beings. For that reason mathematics has become very e¤ective in
describing what is going on and what the problems are and what to do about
them. Thus, everyday observations and thoughtful guesses �nd their way into
formulating whatever assumptions you want to make as the basis for a mathe-
matical system. Following this path we will see that new mathematical systems
are created not only by new axioms, but by new meanings assigned to the op-
erators of multiplication, and addition as well as to new binary relations. We
will see how the axioms of the real number line apply to vector analysis, com-
plex variables, quaternions, and various �elds of technology such as computer
sciences and engineering.
But let us begin at the beginning. We want to introduce the language of

mathematics, speci�cally mathematical sentences, called equations. Believe it
or not, the only verb needed in a mathematical sentence is the in�nitive form to
be, and its conjugations: is, are, equals, was, were, ..., all denoted by the equal

1You will �nd all of these axioms, including the Dedekind cut axiom in the Chapter 4.
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sign, = : We also use negations such as: is not, are not, will not be, not equals,
is less than, and is greater than, ...denoted by 6=; < and >.

7


